NAME PCRE - Perl-compatible regular expressions DIFFERENCES FROM PERL This document describes the differences in the ways that PCRE and Perl handle regular expressions. The differences described here are with respect to Perl 5.8. 1. PCRE does not allow repeat quantifiers on lookahead assertions. Perl permits them, but they do not mean what you might think. For example, (?!a){3} does not assert that the next three characters are not "a". It just asserts that the next character is not "a" three times. 2. Capturing subpatterns that occur inside negative looka- head assertions are counted, but their entries in the offsets vector are never set. Perl sets its numerical vari- ables from any such patterns that are matched before the assertion fails to match something (thereby succeeding), but only if the negative lookahead assertion contains just one branch. 3. Though binary zero characters are supported in the sub- ject string, they are not allowed in a pattern string because it is passed as a normal C string, terminated by zero. The escape sequence "\0" can be used in the pattern to represent a binary zero. 4. The following Perl escape sequences are not supported: \l, \u, \L, \U, \P, \p, and \X. In fact these are imple- mented by Perl's general string-handling and are not part of its pattern matching engine. If any of these are encountered by PCRE, an error is generated. 5. PCRE does support the \Q...\E escape for quoting sub- strings. Characters in between are treated as literals. This is slightly different from Perl in that $ and @ are also handled as literals inside the quotes. In Perl, they cause variable interpolation (but of course PCRE does not have variables). Note the following examples: Pattern PCRE matches Perl matches \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz \Qabc\$xyz\E abc\$xyz abc\$xyz \Qabc\E\$\Qxyz\E abc$xyz abc$xyz In PCRE, the \Q...\E mechanism is not recognized inside a character class. 8. Fairly obviously, PCRE does not support the (?{code}) and (?p{code}) constructions. However, there is some experimen- tal support for recursive patterns using the non-Perl items (?R), (?number) and (?P>name). Also, the PCRE "callout" feature allows an external function to be called during pat- tern matching. 9. There are some differences that are concerned with the settings of captured strings when part of a pattern is repeated. For example, matching "aba" against the pattern /^(a(b)?)+$/ in Perl leaves $2 unset, but in PCRE it is set to "b". 10. PCRE provides some extensions to the Perl regular expression facilities: (a) Although lookbehind assertions must match fixed length strings, each alternative branch of a lookbehind assertion can match a different length of string. Perl requires them all to have the same length. (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $ meta-character matches only at the very end of the string. (c) If PCRE_EXTRA is set, a backslash followed by a letter with no special meaning is faulted. (d) If PCRE_UNGREEDY is set, the greediness of the repeti- tion quantifiers is inverted, that is, by default they are not greedy, but if followed by a question mark they are. (e) PCRE_ANCHORED can be used to force a pattern to be tried only at the first matching position in the subject string. (f) The PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, and PCRE_NO_AUTO_CAPTURE options for pcre_exec() have no Perl equivalents. (g) The (?R), (?number), and (?P>name) constructs allows for recursive pattern matching (Perl can do this using the (?p{code}) construct, which PCRE cannot support.) (h) PCRE supports named capturing substrings, using the Python syntax. (i) PCRE supports the possessive quantifier "++" syntax, taken from Sun's Java package. (j) The (R) condition, for testing recursion, is a PCRE extension. (k) The callout facility is PCRE-specific. Last updated: 03 February 2003 Copyright (c) 1997-2003 University of Cambridge. ----------------------------------------------------------------------------- NAME PCRE - Perl-compatible regular expressions PCRE REGULAR EXPRESSION DETAILS There are two different sets of meta-characters: those that are recognized anywhere in the pattern except within square brackets, and those that are recognized in square brackets. Outside square brackets, the meta-characters are as follows: \ general escape character with several uses ^ assert start of string (or line, in multiline mode) $ assert end of string (or line, in multiline mode) . match any character except newline (by default) [ start character class definition | start of alternative branch ( start subpattern ) end subpattern ? extends the meaning of ( also 0 or 1 quantifier also quantifier minimizer * 0 or more quantifier + 1 or more quantifier also "possessive quantifier" { start min/max quantifier Part of a pattern that is in square brackets is called a "character class". In a character class the only meta- characters are: \ general escape character ^ negate the class, but only if the first character - indicates character range [ POSIX character class (only if followed by POSIX syntax) ] terminates the character class The following sections describe the use of each of the meta-characters. BACKSLASH The backslash character has several uses. Firstly, if it is followed by a non-alphameric character, it takes away any special meaning that character may have. This use of backslash as an escape character applies both inside and outside character classes. For example, if you want to match a * character, you write \* in the pattern. This escaping action applies whether or not the following character would otherwise be interpreted as a meta-character, so it is always safe to precede a non- alphameric with backslash to specify that it stands for itself. In particular, if you want to match a backslash, you write \\. If a pattern is compiled with the PCRE_EXTENDED option, whi- tespace in the pattern (other than in a character class) and characters between a # outside a character class and the next newline character are ignored. An escaping backslash can be used to include a whitespace or # character as part of the pattern. If you want to remove the special meaning from a sequence of characters, you can do so by putting them between \Q and \E. This is different from Perl in that $ and @ are handled as literals in \Q...\E sequences in PCRE, whereas in Perl, $ and @ cause variable interpolation. Note the following exam- ples: Pattern PCRE matches Perl matches \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz \Qabc\$xyz\E abc\$xyz abc\$xyz \Qabc\E\$\Qxyz\E abc$xyz abc$xyz The \Q...\E sequence is recognized both inside and outside character classes. A second use of backslash provides a way of encoding non- printing characters in patterns in a visible manner. There is no restriction on the appearance of non-printing charac- ters, apart from the binary zero that terminates a pattern, but when a pattern is being prepared by text editing, it is usually easier to use one of the following escape sequences than the binary character it represents: \a alarm, that is, the BEL character (hex 07) \cx "control-x", where x is any character \e escape (hex 1B) \f formfeed (hex 0C) \n newline (hex 0A) \r carriage return (hex 0D) \t tab (hex 09) \ddd character with octal code ddd, or backreference \xhh character with hex code hh \x{hhh..} character with hex code hhh... (UTF-8 mode only) The precise effect of \cx is as follows: if x is a lower case letter, it is converted to upper case. Then bit 6 of the character (hex 40) is inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c; becomes hex 7B. The handling of a backslash followed by a digit other than 0 is complicated. Outside a character class, PCRE reads it and any following digits as a decimal number. If the number is less than 10, or if there have been at least that many previous capturing left parentheses in the expression, the entire sequence is taken as a back reference. A description of how this works is given later, following the discussion of parenthesized subpatterns. Inside a character class, or if the decimal number is greater than 9 and there have not been that many capturing subpatterns, PCRE re-reads up to three octal digits follow- ing the backslash, and generates a single byte from the least significant 8 bits of the value. Any subsequent digits stand for themselves. For example: \040 is another way of writing a space \40 is the same, provided there are fewer than 40 previous capturing subpatterns \7 is always a back reference \11 might be a back reference, or another way of writing a tab \011 is always a tab \0113 is a tab followed by the character "3" \113 might be a back reference, otherwise the character with octal code 113 \377 might be a back reference, otherwise the byte consisting entirely of 1 bits \81 is either a back reference, or a binary zero followed by the two characters "8" and "1" Note that octal values of 100 or greater must not be intro- duced by a leading zero, because no more than three octal digits are ever read. All the sequences that define a single byte value or a sin- gle UTF-8 character (in UTF-8 mode) can be used both inside and outside character classes. In addition, inside a charac- ter class, the sequence \b is interpreted as the backspace character (hex 08). Outside a character class it has a dif- ferent meaning (see below). The third use of backslash is for specifying generic charac- ter types: \d any decimal digit \D any character that is not a decimal digit \s any whitespace character \S any character that is not a whitespace character \w any "word" character \W any "non-word" character For compatibility with Perl, \s does not match the VT char- acter (code 11). This makes it different from the the POSIX "space" class. The \s characters are HT (9), LF (10), FF (12), CR (13), and space (32). A "word" character is any letter or digit or the underscore character, that is, any character which can be part of a Perl "word". The definition of letters and digits is con- trolled by PCRE's character tables, and may vary if locale- specific matching is taking place (see "Locale support" in the pcreapi page). For example, in the "fr" (French) locale, some character codes greater than 128 are used for accented letters, and these are matched by \w. These character type sequences can appear both inside and outside character classes. They each match one character of the appropriate type. If the current matching point is at the end of the subject string, all of them fail, since there is no character to match. The fourth use of backslash is for certain simple asser- tions. An assertion specifies a condition that has to be met at a particular point in a match, without consuming any characters from the subject string. The use of subpatterns for more complicated assertions is described below. The backslashed assertions are \b matches at a word boundary \B matches when not at a word boundary \A matches at start of subject \Z matches at end of subject or before newline at end \z matches at end of subject \G matches at first matching position in subject These assertions may not appear in character classes (but note that \b has a different meaning, namely the backspace character, inside a character class). A word boundary is a position in the subject string where the current character and the previous character do not both match \w or \W (i.e. one matches \w and the other matches \W), or the start or end of the string if the first or last character matches \w, respectively. The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described below) in that they only ever match at the very start and end of the subject string, whatever options are set. Thus, they are independent of mul- tiline mode. The \G assertion is true only when the current matching position is at the start point of the match, as specified by the startoffset argument of pcre_exec(). It differs from \A when the value of startoffset is non-zero. By calling pcre_exec() multiple times with appropriate arguments, you can mimic Perl's /g option, and it is in this kind of imple- mentation where \G can be useful. Note, however, that PCRE's interpretation of \G, as the start of the current match, is subtly different from Perl's, which defines it as the end of the previous match. In Perl, these can be different when the previously matched string was empty. Because PCRE does just one match at a time, it cannot reproduce this behaviour. If all the alternatives of a pattern begin with \G, the expression is anchored to the starting match position, and the "anchored" flag is set in the compiled regular expres- sion. CIRCUMFLEX AND DOLLAR Outside a character class, in the default matching mode, the circumflex character is an assertion which is true only if the current matching point is at the start of the subject string. If the startoffset argument of pcre_exec() is non- zero, circumflex can never match if the PCRE_MULTILINE option is unset. Inside a character class, circumflex has an entirely different meaning (see below). Circumflex need not be the first character of the pattern if a number of alternatives are involved, but it should be the first thing in each alternative in which it appears if the pattern is ever to match that branch. If all possible alter- natives start with a circumflex, that is, if the pattern is constrained to match only at the start of the subject, it is said to be an "anchored" pattern. (There are also other con- structs that can cause a pattern to be anchored.) A dollar character is an assertion which is true only if the current matching point is at the end of the subject string, or immediately before a newline character that is the last character in the string (by default). Dollar need not be the last character of the pattern if a number of alternatives are involved, but it should be the last item in any branch in which it appears. Dollar has no special meaning in a character class. The meaning of dollar can be changed so that it matches only at the very end of the string, by setting the PCRE_DOLLAR_ENDONLY option at compile time. This does not affect the \Z assertion. The meanings of the circumflex and dollar characters are changed if the PCRE_MULTILINE option is set. When this is the case, they match immediately after and immediately before an internal newline character, respectively, in addi- tion to matching at the start and end of the subject string. For example, the pattern /^abc$/ matches the subject string "def\nabc" in multiline mode, but not otherwise. Conse- quently, patterns that are anchored in single line mode because all branches start with ^ are not anchored in multi- line mode, and a match for circumflex is possible when the startoffset argument of pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set. Note that the sequences \A, \Z, and \z can be used to match the start and end of the subject in both modes, and if all branches of a pattern start with \A it is always anchored, whether PCRE_MULTILINE is set or not. FULL STOP (PERIOD, DOT) Outside a character class, a dot in the pattern matches any one character in the subject, including a non-printing char- acter, but not (by default) newline. In UTF-8 mode, a dot matches any UTF-8 character, which might be more than one byte long, except (by default) for newline. If the PCRE_DOTALL option is set, dots match newlines as well. The handling of dot is entirely independent of the handling of circumflex and dollar, the only relationship being that they both involve newline characters. Dot has no special meaning in a character class. MATCHING A SINGLE BYTE Outside a character class, the escape sequence \C matches any one byte, both in and out of UTF-8 mode. Unlike a dot, it always matches a newline. The feature is provided in Perl in order to match individual bytes in UTF-8 mode. Because it breaks up UTF-8 characters into individual bytes, what remains in the string may be a malformed UTF-8 string. For this reason it is best avoided. PCRE does not allow \C to appear in lookbehind assertions (see below), because in UTF-8 mode it makes it impossible to calculate the length of the lookbehind. SQUARE BRACKETS An opening square bracket introduces a character class, ter- minated by a closing square bracket. A closing square bracket on its own is not special. If a closing square bracket is required as a member of the class, it should be the first data character in the class (after an initial cir- cumflex, if present) or escaped with a backslash. A character class matches a single character in the subject. In UTF-8 mode, the character may occupy more than one byte. A matched character must be in the set of characters defined by the class, unless the first character in the class defin- ition is a circumflex, in which case the subject character must not be in the set defined by the class. If a circumflex is actually required as a member of the class, ensure it is not the first character, or escape it with a backslash. For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] matches any character that is not a lower case vowel. Note that a circumflex is just a con- venient notation for specifying the characters which are in the class by enumerating those that are not. It is not an assertion: it still consumes a character from the subject string, and fails if the current pointer is at the end of the string. In UTF-8 mode, characters with values greater than 255 can be included in a class as a literal string of bytes, or by using the \x{ escaping mechanism. When caseless matching is set, any letters in a class represent both their upper case and lower case versions, so for example, a caseless [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a case- ful version would. PCRE does not support the concept of case for characters with values greater than 255. The newline character is never treated in any special way in character classes, whatever the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A class such as [^a] will always match a newline. The minus (hyphen) character can be used to specify a range of characters in a character class. For example, [d-m] matches any letter between d and m, inclusive. If a minus character is required in a class, it must be escaped with a backslash or appear in a position where it cannot be inter- preted as indicating a range, typically as the first or last character in the class. It is not possible to have the literal character "]" as the end character of a range. A pattern such as [W-]46] is interpreted as a class of two characters ("W" and "-") fol- lowed by a literal string "46]", so it would match "W46]" or "-46]". However, if the "]" is escaped with a backslash it is interpreted as the end of range, so [W-\]46] is inter- preted as a single class containing a range followed by two separate characters. The octal or hexadecimal representation of "]" can also be used to end a range. Ranges operate in the collating sequence of character values. They can also be used for characters specified numerically, for example [\000-\037]. In UTF-8 mode, ranges can include characters whose values are greater than 255, for example [\x{100}-\x{2ff}]. If a range that includes letters is used when caseless matching is set, it matches the letters in either case. For example, [W-c] is equivalent to [][\^_`wxyzabc], matched caselessly, and if character tables for the "fr" locale are in use, [\xc8-\xcb] matches accented E characters in both cases. The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and add the characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal digit. A circumflex can conveniently be used with the upper case character types to specify a more res- tricted set of characters than the matching lower case type. For example, the class [^\W_] matches any letter or digit, but not underscore. All non-alphameric characters other than \, -, ^ (at the start) and the terminating ] are non-special in character classes, but it does no harm if they are escaped. POSIX CHARACTER CLASSES Perl supports the POSIX notation for character classes, which uses names enclosed by [: and :] within the enclosing square brackets. PCRE also supports this notation. For exam- ple, [01[:alpha:]%] matches "0", "1", any alphabetic character, or "%". The sup- ported class names are alnum letters and digits alpha letters ascii character codes 0 - 127 blank space or tab only cntrl control characters digit decimal digits (same as \d) graph printing characters, excluding space lower lower case letters print printing characters, including space punct printing characters, excluding letters and digits space white space (not quite the same as \s) upper upper case letters word "word" characters (same as \w) xdigit hexadecimal digits The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and space (32). Notice that this list includes the VT character (code 11). This makes "space" dif- ferent to \s, which does not include VT (for Perl compati- bility). The name "word" is a Perl extension, and "blank" is a GNU extension from Perl 5.8. Another Perl extension is negation, which is indicated by a ^ character after the colon. For example, [12[:^digit:]] matches "1", "2", or any non-digit. VERTICAL BAR Vertical bar characters are used to separate alternative patterns. For example, the pattern gilbert|sullivan matches either "gilbert" or "sullivan". Any number of alter- natives may appear, and an empty alternative is permitted (matching the empty string). The matching process tries each alternative in turn, from left to right, and the first one that succeeds is used. If the alternatives are within a subpattern (defined below), "succeeds" means matching the rest of the main pattern as well as the alternative in the subpattern. INTERNAL OPTION SETTING The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and PCRE_EXTENDED options can be changed from within the pattern by a sequence of Perl option letters enclosed between "(?" and ")". The option letters are i for PCRE_CASELESS m for PCRE_MULTILINE s for PCRE_DOTALL x for PCRE_EXTENDED For example, (?im) sets caseless, multiline matching. It is also possible to unset these options by preceding the letter with a hyphen, and a combined setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also permitted. If a letter appears both before and after the hyphen, the option is unset. When an option change occurs at top level (that is, not inside subpattern parentheses), the change applies to the remainder of the pattern that follows. If the change is placed right at the start of a pattern, PCRE extracts it into the global options (and it will therefore show up in data extracted by the pcre_fullinfo() function). An option change within a subpattern affects only that part of the current pattern that follows it, so (a(?i)b)c matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used). By this means, options can be made to have different settings in different parts of the pattern. Any changes made in one alternative do carry on into subsequent branches within the same subpattern. For example, (a(?i)b|c) matches "ab", "aB", "c", and "C", even though when matching "C" the first branch is abandoned before the option setting. This is because the effects of option settings happen at compile time. There would be some very weird behaviour oth- erwise. The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed in the same way as the Perl-compatible options by using the characters U and X respectively. The (?X) flag setting is special in that it must always occur earlier in the pattern than any of the additional features it turns on, even when it is at top level. It is best put at the start. SUBPATTERNS Subpatterns are delimited by parentheses (round brackets), which can be nested. Marking part of a pattern as a subpat- tern does two things: 1. It localizes a set of alternatives. For example, the pat- tern cat(aract|erpillar|) matches one of the words "cat", "cataract", or "caterpil- lar". Without the parentheses, it would match "cataract", "erpillar" or the empty string. 2. It sets up the subpattern as a capturing subpattern (as defined above). When the whole pattern matches, that por- tion of the subject string that matched the subpattern is passed back to the caller via the ovector argument of pcre_exec(). Opening parentheses are counted from left to right (starting from 1) to obtain the numbers of the captur- ing subpatterns. For example, if the string "the red king" is matched against the pattern the ((red|white) (king|queen)) the captured substrings are "red king", "red", and "king", and are numbered 1, 2, and 3, respectively. The fact that plain parentheses fulfil two functions is not always helpful. There are often times when a grouping sub- pattern is required without a capturing requirement. If an opening parenthesis is followed by a question mark and a colon, the subpattern does not do any capturing, and is not counted when computing the number of any subsequent captur- ing subpatterns. For example, if the string "the white queen" is matched against the pattern the ((?:red|white) (king|queen)) the captured substrings are "white queen" and "queen", and are numbered 1 and 2. The maximum number of capturing sub- patterns is 65535, and the maximum depth of nesting of all subpatterns, both capturing and non-capturing, is 200. As a convenient shorthand, if any option settings are required at the start of a non-capturing subpattern, the option letters may appear between the "?" and the ":". Thus the two patterns (?i:saturday|sunday) (?:(?i)saturday|sunday) match exactly the same set of strings. Because alternative branches are tried from left to right, and options are not reset until the end of the subpattern is reached, an option setting in one branch does affect subsequent branches, so the above patterns match "SUNDAY" as well as "Saturday". NAMED SUBPATTERNS Identifying capturing parentheses by number is simple, but it can be very hard to keep track of the numbers in compli- cated regular expressions. Furthermore, if an expression is modified, the numbers may change. To help with the diffi- culty, PCRE supports the naming of subpatterns, something that Perl does not provide. The Python syntax (?P...) is used. Names consist of alphanumeric characters and under- scores, and must be unique within a pattern. Named capturing parentheses are still allocated numbers as well as names. The PCRE API provides function calls for extracting the name-to-number translation table from a com- piled pattern. For further details see the pcreapi documen- tation. REPETITION Repetition is specified by quantifiers, which can follow any of the following items: a literal data character the . metacharacter the \C escape sequence escapes such as \d that match single characters a character class a back reference (see next section) a parenthesized subpattern (unless it is an assertion) The general repetition quantifier specifies a minimum and maximum number of permitted matches, by giving the two numbers in curly brackets (braces), separated by a comma. The numbers must be less than 65536, and the first must be less than or equal to the second. For example: z{2,4} matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special character. If the second number is omitted, but the comma is present, there is no upper limit; if the second number and the comma are both omitted, the quantifier specifies an exact number of required matches. Thus [aeiou]{3,} matches at least 3 successive vowels, but may match many more, while \d{8} matches exactly 8 digits. An opening curly bracket that appears in a position where a quantifier is not allowed, or one that does not match the syntax of a quantifier, is taken as a literal character. For example, {,6} is not a quantif- ier, but a literal string of four characters. In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 characters, each of which is represented by a two-byte sequence. The quantifier {0} is permitted, causing the expression to behave as if the previous item and the quantifier were not present. For convenience (and historical compatibility) the three most common quantifiers have single-character abbreviations: * is equivalent to {0,} + is equivalent to {1,} ? is equivalent to {0,1} It is possible to construct infinite loops by following a subpattern that can match no characters with a quantifier that has no upper limit, for example: (a?)* Earlier versions of Perl and PCRE used to give an error at compile time for such patterns. However, because there are cases where this can be useful, such patterns are now accepted, but if any repetition of the subpattern does in fact match no characters, the loop is forcibly broken. By default, the quantifiers are "greedy", that is, they match as much as possible (up to the maximum number of per- mitted times), without causing the rest of the pattern to fail. The classic example of where this gives problems is in trying to match comments in C programs. These appear between the sequences /* and */ and within the sequence, individual * and / characters may appear. An attempt to match C com- ments by applying the pattern /\*.*\*/ to the string /* first command */ not comment /* second comment */ fails, because it matches the entire string owing to the greediness of the .* item. However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead matches the minimum number of times possible, so the pattern /\*.*?\*/ does the right thing with the C comments. The meaning of the various quantifiers is not otherwise changed, just the pre- ferred number of matches. Do not confuse this use of ques- tion mark with its use as a quantifier in its own right. Because it has two uses, it can sometimes appear doubled, as in \d??\d which matches one digit by preference, but can match two if that is the only way the rest of the pattern matches. If the PCRE_UNGREEDY option is set (an option which is not available in Perl), the quantifiers are not greedy by default, but individual ones can be made greedy by following them with a question mark. In other words, it inverts the default behaviour. When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 1 or with a limited max- imum, more store is required for the compiled pattern, in proportion to the size of the minimum or maximum. If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl's /s) is set, thus allowing the . to match newlines, the pattern is implicitly anchored, because whatever follows will be tried against every charac- ter position in the subject string, so there is no point in retrying the overall match at any position after the first. PCRE normally treats such a pattern as though it were pre- ceded by \A. In cases where it is known that the subject string contains no newlines, it is worth setting PCRE_DOTALL in order to obtain this optimization, or alternatively using ^ to indi- cate anchoring explicitly. However, there is one situation where the optimization can- not be used. When .* is inside capturing parentheses that are the subject of a backreference elsewhere in the pattern, a match at the start may fail, and a later one succeed. Con- sider, for example: (.*)abc\1 If the subject is "xyz123abc123" the match point is the fourth character. For this reason, such a pattern is not implicitly anchored. When a capturing subpattern is repeated, the value captured is the substring that matched the final iteration. For exam- ple, after (tweedle[dume]{3}\s*)+ has matched "tweedledum tweedledee" the value of the cap- tured substring is "tweedledee". However, if there are nested capturing subpatterns, the corresponding captured values may have been set in previous iterations. For exam- ple, after /(a|(b))+/ matches "aba" the value of the second captured substring is "b". ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS With both maximizing and minimizing repetition, failure of what follows normally causes the repeated item to be re- evaluated to see if a different number of repeats allows the rest of the pattern to match. Sometimes it is useful to prevent this, either to change the nature of the match, or to cause it fail earlier than it otherwise might, when the author of the pattern knows there is no point in carrying on. Consider, for example, the pattern \d+foo when applied to the subject line 123456bar After matching all 6 digits and then failing to match "foo", the normal action of the matcher is to try again with only 5 digits matching the \d+ item, and then with 4, and so on, before ultimately failing. "Atomic grouping" (a term taken from Jeffrey Friedl's book) provides the means for specify- ing that once a subpattern has matched, it is not to be re- evaluated in this way. If we use atomic grouping for the previous example, the matcher would give up immediately on failing to match "foo" the first time. The notation is a kind of special parenthesis, starting with (?> as in this example: (?>\d+)bar This kind of parenthesis "locks up" the part of the pattern it contains once it has matched, and a failure further into the pattern is prevented from backtracking into it. Back- tracking past it to previous items, however, works as nor- mal. An alternative description is that a subpattern of this type matches the string of characters that an identical stan- dalone pattern would match, if anchored at the current point in the subject string. Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as the above example can be thought of as a maximizing repeat that must swallow everything it can. So, while both \d+ and \d+? are prepared to adjust the number of digits they match in order to make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits. Atomic groups in general can of course contain arbitrarily complicated subpatterns, and can be nested. However, when the subpattern for an atomic group is just a single repeated item, as in the example above, a simpler notation, called a "possessive quantifier" can be used. This consists of an additional + character following a quantifier. Using this notation, the previous example can be rewritten as \d++bar Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY option is ignored. They are a convenient nota- tion for the simpler forms of atomic group. However, there is no difference in the meaning or processing of a posses- sive quantifier and the equivalent atomic group. The possessive quantifier syntax is an extension to the Perl syntax. It originates in Sun's Java package. When a pattern contains an unlimited repeat inside a subpat- tern that can itself be repeated an unlimited number of times, the use of an atomic group is the only way to avoid some failing matches taking a very long time indeed. The pattern (\D+|<\d+>)*[!?] matches an unlimited number of substrings that either con- sist of non-digits, or digits enclosed in <>, followed by either ! or ?. When it matches, it runs quickly. However, if it is applied to aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa it takes a long time before reporting failure. This is because the string can be divided between the two repeats in a large number of ways, and all have to be tried. (The exam- ple used [!?] rather than a single character at the end, because both PCRE and Perl have an optimization that allows for fast failure when a single character is used. They remember the last single character that is required for a match, and fail early if it is not present in the string.) If the pattern is changed to ((?>\D+)|<\d+>)*[!?] sequences of non-digits cannot be broken, and failure hap- pens quickly. BACK REFERENCES Outside a character class, a backslash followed by a digit greater than 0 (and possibly further digits) is a back reference to a capturing subpattern earlier (that is, to its left) in the pattern, provided there have been that many previous capturing left parentheses. However, if the decimal number following the backslash is less than 10, it is always taken as a back reference, and causes an error only if there are not that many capturing left parentheses in the entire pattern. In other words, the parentheses that are referenced need not be to the left of the reference for numbers less than 10. See the section entitled "Backslash" above for further details of the han- dling of digits following a backslash. A back reference matches whatever actually matched the cap- turing subpattern in the current subject string, rather than anything matching the subpattern itself (see "Subpatterns as subroutines" below for a way of doing that). So the pattern (sens|respons)e and \1ibility matches "sense and sensibility" and "response and responsi- bility", but not "sense and responsibility". If caseful matching is in force at the time of the back reference, the case of letters is relevant. For example, ((?i)rah)\s+\1 matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original capturing subpattern is matched case- lessly. Back references to named subpatterns use the Python syntax (?P=name). We could rewrite the above example as follows: (?(?i)rah)\s+(?P=p1) There may be more than one back reference to the same sub- pattern. If a subpattern has not actually been used in a particular match, any back references to it always fail. For example, the pattern (a|(bc))\2 always fails if it starts to match "a" rather than "bc". Because there may be many capturing parentheses in a pat- tern, all digits following the backslash are taken as part of a potential back reference number. If the pattern contin- ues with a digit character, some delimiter must be used to terminate the back reference. If the PCRE_EXTENDED option is set, this can be whitespace. Otherwise an empty comment can be used. A back reference that occurs inside the parentheses to which it refers fails when the subpattern is first used, so, for example, (a\1) never matches. However, such references can be useful inside repeated subpatterns. For example, the pat- tern (a|b\1)+ matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of the subpattern, the back reference matches the character string corresponding to the previous itera- tion. In order for this to work, the pattern must be such that the first iteration does not need to match the back reference. This can be done using alternation, as in the example above, or by a quantifier with a minimum of zero. ASSERTIONS An assertion is a test on the characters following or preceding the current matching point that does not actually consume any characters. The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described above. More com- plicated assertions are coded as subpatterns. There are two kinds: those that look ahead of the current position in the subject string, and those that look behind it. An assertion subpattern is matched in the normal way, except that it does not cause the current matching position to be changed. Lookahead assertions start with (?= for positive assertions and (?! for negative assertions. For example, \w+(?=;) matches a word followed by a semicolon, but does not include the semicolon in the match, and foo(?!bar) matches any occurrence of "foo" that is not followed by "bar". Note that the apparently similar pattern (?!foo)bar does not find an occurrence of "bar" that is preceded by something other than "foo"; it finds any occurrence of "bar" whatsoever, because the assertion (?!foo) is always true when the next three characters are "bar". A lookbehind assertion is needed to achieve this effect. If you want to force a matching failure at some point in a pattern, the most convenient way to do it is with (?!) because an empty string always matches, so an assertion that requires there not to be an empty string must always fail. Lookbehind assertions start with (?<= for positive asser- tions and (?.*)(?<=abcd) or, equivalently, ^.*+(?<=abcd) there can be no backtracking for the .* item; it can match only the entire string. The subsequent lookbehind assertion does a single test on the last four characters. If it fails, the match fails immediately. For long strings, this approach makes a significant difference to the processing time. Several assertions (of any sort) may occur in succession. For example, (?<=\d{3})(?[^()]+) | (?p{$re}) )* \)}x; The (?p{...}) item interpolates Perl code at run time, and in this case refers recursively to the pattern in which it appears. Obviously, PCRE cannot support the interpolation of Perl code. Instead, it supports some special syntax for recursion of the entire pattern, and also for individual subpattern recursion. The special item that consists of (? followed by a number greater than zero and a closing parenthesis is a recursive call of the subpattern of the given number, provided that it occurs inside that subpattern. (If not, it is a "subroutine" call, which is described in the next section.) The special item (?R) is a recursive call of the entire regular expres- sion. For example, this PCRE pattern solves the nested parentheses problem (assume the PCRE_EXTENDED option is set so that white space is ignored): \( ( (?>[^()]+) | (?R) )* \) First it matches an opening parenthesis. Then it matches any number of substrings which can either be a sequence of non- parentheses, or a recursive match of the pattern itself (that is a correctly parenthesized substring). Finally there is a closing parenthesis. If this were part of a larger pattern, you would not want to recurse the entire pattern, so instead you could use this: ( \( ( (?>[^()]+) | (?1) )* \) ) We have put the pattern into parentheses, and caused the recursion to refer to them instead of the whole pattern. In a larger pattern, keeping track of parenthesis numbers can be tricky. It may be more convenient to use named parentheses instead. For this, PCRE uses (?P>name), which is an extension to the Python syntax that PCRE uses for named parentheses (Perl does not provide named parentheses). We could rewrite the above example as follows: (? \( ( (?>[^()]+) | (?P>pn) )* \) ) This particular example pattern contains nested unlimited repeats, and so the use of atomic grouping for matching strings of non-parentheses is important when applying the pattern to strings that do not match. For example, when this pattern is applied to (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa() it yields "no match" quickly. However, if atomic grouping is not used, the match runs for a very long time indeed because there are so many different ways the + and * repeats can carve up the subject, and all have to be tested before failure can be reported. At the end of a match, the values set for any capturing sub- patterns are those from the outermost level of the recursion at which the subpattern value is set. If you want to obtain intermediate values, a callout function can be used (see below and the pcrecallout documentation). If the pattern above is matched against (ab(cd)ef) the value for the capturing parentheses is "ef", which is the last value taken on at the top level. If additional parentheses are added, giving \( ( ( (?>[^()]+) | (?R) )* ) \) ^ ^ ^ ^ the string they capture is "ab(cd)ef", the contents of the top level parentheses. If there are more than 15 capturing parentheses in a pattern, PCRE has to obtain extra memory to store data during a recursion, which it does by using pcre_malloc, freeing it via pcre_free afterwards. If no memory can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error. Do not confuse the (?R) item with the condition (R), which tests for recursion. Consider this pattern, which matches text in angle brackets, allowing for arbitrary nesting. Only digits are allowed in nested brackets (that is, when recurs- ing), whereas any characters are permitted at the outer level. < (?: (?(R) \d++ | [^<>]*+) | (?R)) * > In this pattern, (?(R) is the start of a conditional subpat- tern, with two different alternatives for the recursive and non-recursive cases. The (?R) item is the actual recursive call. SUBPATTERNS AS SUBROUTINES If the syntax for a recursive subpattern reference (either by number or by name) is used outside the parentheses to which it refers, it operates like a subroutine in a program- ming language. An earlier example pointed out that the pat- tern (sens|respons)e and \1ibility matches "sense and sensibility" and "response and responsi- bility", but not "sense and responsibility". If instead the pattern (sens|respons)e and (?1)ibility is used, it does match "sense and responsibility" as well as the other two strings. Such references must, however, follow the subpattern to which they refer. ----------------------------------------------------------------------------- NAME PCRE - Perl-compatible regular expressions PCRE PERFORMANCE Certain items that may appear in regular expression patterns are more efficient than others. It is more efficient to use a character class like [aeiou] than a set of alternatives such as (a|e|i|o|u). In general, the simplest construction that provides the required behaviour is usually the most efficient. Jeffrey Friedl's book contains a lot of discus- sion about optimizing regular expressions for efficient per- formance. When a pattern begins with .* not in parentheses, or in parentheses that are not the subject of a backreference, and the PCRE_DOTALL option is set, the pattern is implicitly anchored by PCRE, since it can match only at the start of a subject string. However, if PCRE_DOTALL is not set, PCRE cannot make this optimization, because the . metacharacter does not then match a newline, and if the subject string contains newlines, the pattern may match from the character immediately following one of them instead of from the very start. For example, the pattern .*second matches the subject "first\nand second" (where \n stands for a newline character), with the match starting at the seventh character. In order to do this, PCRE has to retry the match starting after every newline in the subject. If you are using such a pattern with subject strings that do not contain newlines, the best performance is obtained by setting PCRE_DOTALL, or starting the pattern with ^.* to indicate explicit anchoring. That saves PCRE from having to scan along the subject looking for a newline to restart at. Beware of patterns that contain nested indefinite repeats. These can take a long time to run when applied to a string that does not match. Consider the pattern fragment (a+)* This can match "aaaa" in 33 different ways, and this number increases very rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases other than 0, the + repeats can match different numbers of times.) When the remainder of the pattern is such that the entire match is going to fail, PCRE has in princi- ple to try every possible variation, and this can take an extremely long time. An optimization catches some of the more simple cases such as (a+)*b where a literal character follows. Before embarking on the standard matching procedure, PCRE checks that there is a "b" later in the subject string, and if there is not, it fails the match immediately. However, when there is no following literal this optimization cannot be used. You can see the difference by comparing the behaviour of (a+)*\d with the pattern above. The former gives a failure almost instantly when applied to a whole line of "a" characters, whereas the latter takes an appreciable time with strings longer than about 20 characters. Last updated: 03 February 2003 Copyright (c) 1997-2003 University of Cambridge.